Dielectrics Newsletter

Scientific newsletter for dielectric spectroscopy

Issue february 2005

Fouad Aliev

Relaxation of Librational Mode in Confined Liquid Crystal

introduction

Dielectric spectroscopy can be applied to investigate multiple aspects of the influence of confinement on dynamic properties of liquid crystals impregnating porous matrices. Applications of dielectric spectroscopy for investigations of confined liquid crystals [1-7] revealed new information on the changes in the molecular mobility as well as changes in the phase transition temperatures as a result of the influence of the confinement.

Alkylcyanobiphenyls such as 4-n-octyl-4'-cyanobiphenyl (8CB) are liquid crystals, which have been deeply investigated in the past and whose dielectric bulk properties have been quite clearly understood. Their molecules have a large dipole moment (~5 D) oriented along the molecular long axis, which signifycantly simplifies the understanding of the dielectric behaviour. In the nematic phase in a geometry in which the probing electric field E is parallel to the director the relaxation due to the restricted rotation of the molecules about their short axis is detected. The temperature dependence of the corresponding relaxation times obeys empirical Arrhenius equation.

For the geometry in which the electric field E is perpendicular to the director n, the relaxation due to librational motion of the molecules should be observed. This process has characteristic frequencies about 10 times higher than the relaxation due to the molecular rotation. The available information on dynamics of librational mode even for bulk liquid crystals, to our knowledge, is scarce, because in order to obtain an appropriate orientation of molecules with respect to probing electric field the sample should be placed into magnetic field. This is very difficult because the samples cells used for measurements at verv high frequencies (hundreds of Megahertz) are large and do not fit between poles of conventional magnets providing magnetic field sufficient for required molecular orientation.

Fig. 1: Comparison of dielectric spectra of rotational (closed circles) and librational (opened circles) modes of 8CB confined in 200 nm cylindrical. All measurements taken at T = 310K.

of Anopore membranes treated with lecithin. This treatment provides homeotropic boundary conditions (the molecules are oriented perpendicularly to the pore walls) for confined 8CB. Since the pore axis is parallel to the probing electric field and the molecular dipole moment is oriented perpendicularly to its direction, such a configuration makes it possible to investigate the dynamics of librational (tumbling) mode by dielectric method. In untreated pores the orientation of molecules is axial (the molecules are oriented in parallel to the pore axis) and the mode due to reorientation of molecules around short axis is detected. Therefore relaxations due to both mechanisms can be investigated separately in these pores. We used NOVOCONTROL equipment to perform these experiments.

relaxation processes

Figure 1 illustrates the difference in relaxation due to reorientation of molecules around short axis and due to their librational motion, observed in 8CB confined in cylindrical pores with axial (parallel to the probing and electric field) radial (perpendicular to the electric field) orientations. It is clear that the relaxation process in lecithin treated matrices (radial orientation) is observed at much higher frequencies than in the bulk sample and therefore, cannot be assigned to the same mechanism

Since the molecules of 8CB do not

have any component of dipole moment perpendicular to the long axis, the only explanation to the observed high frequency relaxation in the treated sample is to associate it with librational motion of molecules. temperature dependence

The temperature dependence of dielectric spectra of the libration mode is complicated and very different from the behavior of the reorientation mode. Figure 2 shows three types of temperature dependences of the dielectric spectra observed for confined 8CB (with radial boundary conditions in anisotropic phases) in three ranges. In the temperature ranges corresponding to the bulk isotropic phase (a) and Sm-A and supercooled state (c), the positions of ε''_m move to lower frequencies with decreasing temperature.

The spectra for isotropic phase in this sample are due to the reorientation of molecules around their short axis, since there is no director in this phase and orientations of molecules in this phase are random. the Therefore temperature dependence of these spectra as well as the temperature dependence of the corresponding relaxation times isotropic phase are typical for the isotropic phase of liquid crystals. In nematic phase (Fig. 2, b), the positions of ε''_m move to higher frequencies with decreasing temperature, indicating the faster relaxation rate at lower temperatures.

of molecules around their short axis for both graphs.

relaxation times of rotation and libration processes

The temperature dependence of the relaxation times (libration mode) obtained for 8CB confined in lecithin treated cylindrical pores is illustrated in Fig. 3.

The temperature dependence of relaxation times of this mode is totally different from the behaviour observed in investigations of relaxation due to reorientation of molecules around their short axis (see Fig 3). The relaxation time of librational mode in the temperature range corresponding to the nematic phase increases upon increasing the temperature towards the nematicisotropic transition temperature. In contrast, the temperature dependence of the relaxation times of the process due to reorientation of molecules around the short axis decreases upon increasing the temperature in the same temperature range. The interpretation of the results obtained nematic phase needs in the involvement of the temperature dependence of the orientational order The decrease parameter. of relaxation time in the temperature range corresponding to the nematic phase of 8CB could be due to an acceleration of the process with increasing the order parameter.

In the sample with homeotropic (radial) boundary conditions, in the case of perfect order and taking into account that the dipole moment of the molecule is parallel to its long axis, the projection of the dipole moment on the direction of the electric field, which is along the pore axis, is minimal because the fluctuations of the molecular orientations with respect to the radial direction are very small. These fluctuations of the dipole moment (or molecular long axis) correspond to the librational motion of the molecule and the amplitude of the fluctuations determines the relaxation rate of the dipole in the viscous media At higher temperatures. these deviations of (fluctuations) are greater amplitude (the order parameter is smaller) and this requires longer time to complete one librational cycle. As a result, the relaxation rate is smaller for fluctuations of greater amplitude and vice versa. Such behaviour has resulted in the particular temperature dependence of relaxation times observed for the librational mode in the nematic phase temperature range. In the smectic-A phase and supercooled state, the temperature dependence of relaxation times is

mainly determined by the variations of viscosity.

The dynamics of the librational mode is totally different from the behaviour observed in investigations of relaxation due to reorientation of molecules around their short axis.

The interpretation of the temperature dependence of relaxation time needs the involvement of the temperature dependence of orientational order parameter and suggests that the better orientational order the faster the process due to libration of molecules.

References

[1]F. M. Aliev and M. N. Breganov, Sov. Phys. JETP. 68, 70 (1989). [2]S.R. Rozanski, R. Stanarius, H. Groothues, and F. Kremer, Liq. Cryst. 20, 59 (1996). [3]G.P. Sinha and F.M. Aliev, Mol. Cryst. Liq. Cryst. 304, 309 (1997). [4]Cramer, Th. Cramer, F. Kremer, and R. Stannarius, J. Chem. Phys. 106, 3730 (1997). [5]G.P. Sinha and F.M. Aliev, Phys. Rev. E 58, 2001 (1998). [6]S. Frunza, L. Frunza and A. Schlonhals, J. Phys. IV France 10, Pr7-115 (2000). [7]F. Aliev, Z. Nazario, G. Sinha, Journal of Non-Crystalline, v. 305,

Prof. Fouad Aliev University of Puerto Rico, San Juan, PR 00931, USA

faliev@rrpac.upr.clu.edu

218 (2002).

Holger Neurohr, Wulff Possart

Amine Cured Epoxy Layers on Metals – Network Dynamics During Thermal and Hygrothermal Ageing

introduction

The broad application of adhesive joints and polymer layers in engineering is always coupled with the topic of durability. Understanding of the fundamental ageing mechanisms and their influence on adhesion and molecular structure in polymer metal bonds is essential for the improvement of durability.

Due to its sensitivity to rotations of permanent dipoles in the electric field, dielectric spectroscopy (DES) offers the possibility to characterise molecular dynamics in polymers over a large frequency range.

In this paper the changes of network dynamics are reported for an amine-cured epoxy adhesive on metals during thermal and hygrothermal ageing. The modification of macromolecular dynamics is studied by DES over a period of 100 days of exposure.

experimental details

The metal substrates are prepared by physical vapour deposition of pure Al or Cu on silicon wafers. The resulting metal surfaces are covered by their native oxides and by the usual adsorption layer from ambient carbonaceous contaminants. The adhesive regarded in this paper consists of diglycidylether of bisphenol A (DGEBA) as the epoxy resin and diethylene triamine (DETA) as the curing agent (100 : 14 by weight).

Resin and hardener are thoroughly mixed in the molten state at 55 °C (melting point of DGEBA: 42 °C) for 5 min in a closed glass vessel. During rapid cooling down to room temperature within about 1 min, further stirring is performed.

Epoxy layers of 5 μ m or 25 μ m thickness (d_{EP}) are prepared by casting the reactive mixture on the substrates. Curing proceeds at room temperature for 48 h followed by a 1 h post-curing step at 120 °C in dry, CO₂-reduced atmosphere (dew point: -70 °C, CO₂ content: < 200 ppm).

Then, the samples are stored at 40 °C either in argon or in regular moist air (90 % r.h.) for up to 100 d. At selected ageing times, samples were taken from the ageing vessel, dried in vacuum and evaporated with an Al counter electrode ($\emptyset = 5 \text{ mm}$). The modification of their macromolecular dynamics was studdielectric ied by broadband measurements in a frequency range of 10⁻² Hz to 10⁶ Hz carried out with a NOVOCONTROL High Resolution Dielectric Alpha Analyser.

In the first step, the ageing effects on the local dynamics (sub-T_grelaxation) in the epoxy layers were analysed by isothermal frequency scans in the range from -80 °C to +40 °C ($\Delta T = 5 \text{ K}$) – see Fig. 1 for an example. Afterwards, the

influence of ageing on the glass transition $(\alpha$ -relaxation) was investigated by experiments at fixed continuously frequencies and increasing temperature (from -10 °C to +200 °C, with $\beta = 8$ K/min).

results and discussion

In the glassy state, the dielectric properties of the epoxy layers are dominated by the local motions of molecular dipoles in the network (cf. the peaks in Fig. 1). A decrease of temperature results in a more and more constrained network dynamics which reduces the local motions. A measure for the energy to activate these processes is given by the apparent activation energy Ea given by the Arrhenius equation which describes the relaxation time of the secondary relaxation as a function of

temperature:
$$\tau_{\max}^{\beta} = \tau_{\infty}^{\beta} \exp\left[\frac{E_{a}}{RT}\right]$$
.

Relaxation time The $\tau_{max} = 1/2 \pi f_{max}$ for the maximum f_{max} of the secondary relaxation peak in ε "(f) is obtained by fitting by a Havriliak-Negami function [1,2].

The Arrhenius plot (Fig. 2) provides straight lines for $\tau_{max}(1/T)$ thus classifying the observed process as a secondary relaxation. Prior to ageing, the local dynamics are characterised by increased activation energies in the 5 µm epoxy layers as compared to the 25 µm layers (inset of Fig. 2). For both d_{EP}-values, the mean activation energies on Cu tend to be somewhat higher than on Al. Thus, the local dynamics of the nonaged state depends on epoxy thickness and slightly on substrate material.

During hygrothermal ageing, two significant changes are observed in the spectra of the epoxy layers $(cf. \epsilon''(\omega)|_{T=-30 \circ C}$ in Fig. 3 as example). During the first four days, secondary relaxation peak the reduces its width which corresponds to a narrowing of the relaxation time distribution for the local mobility. This effect is obvious on both substrates for both d_{EP}-values.

In the course of further ageing, the relaxation peak shifts in position. For all 25 μ m layers and for the 5 μ m layers on Al, the relaxation peak shifts to higher frequencies whereas the peak in the 5 µm layers on Cu tends to shift to lower frequencies.

During thermal ageing (e.g. Fig. 4), the width of the relaxation time distribution also reduces significantly within the first four days. But in the further course of ageing the relaxation peak is stable in position and width in contrast to hygrothermal ageing.

Accordingly, both thermal and hygrothermal ageing reduce the width of relaxation time distributions within the first days. In addition, hygrothermal ageing affects the average local network dynamics. The changes are specific for the substrate material and depend on the layer thickness d_{EP}.

The cooperative macromolecular mobility of the α -relaxation in the epoxy layers is considered by dielectric measurements with a

constant heating rate β at a number of fixed frequencies. For the nonaged state, these temperature scans show the dynamic glass transition for the epoxy matrix in the range of $130 \,^{\circ}\text{C} - 160 \,^{\circ}\text{C}$ at $100 \,\text{Hz}$ (see Fig. 5). As indicated by the strong increase of the permittivity ε ' above

+150 °C, the epoxy layers on copper are stronger affected by electrode polarisation. During hygrothermal and thermal ageing as well, a second glass transition $T_{g,2}$ emerges within four days of ageing, well below the matrix glass transition (see Fig. 6 for example).

It indicates that a new, more mobile phase separated inside the epoxy matrix.

The effects of ongoing ageing on the two glass transitions are quite complex. During the 100 days of *hygrothermal ageing*, the T_g of the matrix glass transition goes through a maximum (see Fig. 7) which is more obvious on Cu than on Al. Moreover, the maximum on Cu is more pronounced for the thinner epoxy layers. For the 25 μ m epoxy on Al, the T_g increases almost monotonously. All that indicates a superposition of several processes induced by ageing.

During *thermal ageing* (Fig. 8) only the T_g of the 5 μ m epoxy layers on Al tends to rise by 4 K. T_g of the other samples seems to be not affected by thermal ageing over a period of 100 days.

The behaviour of $T_{g,2}$ is very specific for the two d_{EP} -values and for the metal substrates (Fig. 9). For the 5 µm layers on Al and Cu, $T_{g,2}$ increases with different rate by ~3 K during hygrothermal ageing. In the 25 µm layers, $T_{g,2}$ is not clearly affected on Cu whereas $T_{g,2}$ goes through a maximum on Al and decreases to a value 4 K below the initial $T_{g,2}$.

In contrast, thermal ageing stimulates a remarkable increase of $T_{g,2}$ in all epoxy layers (Fig. 10). The effect is more pronounced in the 5 μ m layers.

conclusion

Thermal and hygrothermal ageing over 100 days lead to obvious changes of the network dynamics in the epoxy layers studied in this work. These changes result from modifications of the epoxy that are not only specific for the ageing conditions but also depend on the Furthermore, substrate material. these aging effects are more intense in thinner epoxy layers. Surprisingly, the substrate affects the epoxy over such great distances as 5 µm.

The chosen ageing conditions are

relatively mild and proceed in the glassy state of the epoxy. Nevertheless, they produce a new glass transition well below the primary glass transition of the epoxy matrix. This indicates the separation of a second phase with increased cooperative mobility. Both glass transitions are affected in specific ways by ageing.

Further investigations are in progress in order to understand which mechanisms are activated during ageing and how they affect the chemical structure and the morphology of the epoxy layers.

References

[1]S. Havriliak and S. J. Havriliak, Dielectric and Mechanical Relaxation in Materials: Analysis, Interpretation, and Application to Polymers; Hanser-Verlag, (1997).

[2] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer-Verlag, (2002).

Holger Neurohr, Prof. Wulff Possart Saarland University P.O.B. 151150 D-66041 Saarbruecken w.possart@mx.uni-saarland.de

Graham Williams

Broadband Dielectric Spectroscopy and its Application 2004 in Delft

The 3rd International Conference on Dielectric Spectroscopy and its Applications was held at Delft University of Technology on 23-26 August 2004. Organised by Prof. Michael Wübbenhorst and his team at the TU-Delft, the conference followed the tradition of earlier DRP Meetings held at Jerusalem and Leipzig.

It was attended by over 160 scientists from 30 countries; 65 lectures were given and 105 Posters describing presented. current broadband researches using dielectric spectroscopy (BDS). The large attendance included a high proportion of young scientists. New researches and active discussions between participants demonstrated welcome the resurgence internationally of dielectrics science.

The Meeting was supported financially by the TU Delft, DCM-TU Delft, KNAW, FOM and DSM in the Netherlands and Novocontrol Technologies.

The variety of topics in the invited talks was exceptional, ranging from the very fundamental (e.g. Kramers-Kronig relations by van Turnhout) to applications of BDS to complex systems (e.g. of treated blood serum by Gorobchenko et al).

As in the previous Conferences many presentations described the structural and secondary relaxations in amorphous polymers and glassforming liquids, as measured over large frequency/temperature ranges (Böhmer, Frick, Richert, Nozaki, Alegria, Yagihara, Capaccioli, Massalska-Arodz, Vassilikou-Dova, Stevenson) together with studies of pressure/temperature effects (Roland, Casalini, Floudas). Theoretical models were proposed for multiple processes in amorphous systems (Diezemann, Dyre, Halpern, Eker).

BDS studies were described for polymer blends/mixtures (Ngai), liquid mixtures (Blochowicz), watercontaining systems (Feldman, Lyashchenko, Swenson, Vassilikou-Dova, Devautour-Vinot, Grineva, Grigera, Hernandez-Perni, Caduff), biological systems (Gatash, Stapert, ferroelectric materials Sekine), (Furukawa. Gerhard-Multhaupt. Bauer, Pawlaczyk, Fichtl, Ben Ishai), liquid crystals (Kresse, Sinha, Aliev, Dantras) and nano/meso-structures (Stevens) together with real-time BDS studies of crystallization Wurm), (Ezquerra, bulk polymerization (Johari) and physical aging (Fukao, Wypych). AC ionconductivity studies of solids were also described (Leon, Runt Kranbuehl, McLachlan). A tribute to the late Prof. Dan Kivelson was given by the writer.

Newer topics included nanoscale and non-linear conductivity spectroscopy in inorganic solids (Roling), BDS studies of molecular dynamics in ultra-thin layers and in confined environments (Kremer, Wübbenhorst, Fukao, Schönhals, Serghei). molecular dynamics simulations of isotropic and oriented polystyrene (Lyulin), non-resonant of hole-burning glass-forming liquids (Blochowicz) and non-linear dielectric resonance spectroscopy of new cellular (foamed) ferroelectret polymers (Bauer. Gerhard-Multhaupt).

The large number of posters complemented the above talks, especially BDS studies of nanoconfined films, of amorphous polymers, functional organic and inorganic materials (eg ferroelectrics), biological systems (blood serum, frog-muscle, bone collagen), conduction phenomena in organic polymers and inorganic solids, while new techniques were introduced (dielectric depth-profiling in epoxy coatings, temperaturemodulated dielectric analysis for cure-monitoring).

In the Measurement Forum Dr Schaumburg gave a presentation of the NOVOCONTROL range of equipment.

Few talks and posters were concerned with the theory of dielectric relaxation and conduction of simple and complex materials. This appears to be one area that needs more input to aid our understandings of the dielectric phenomena presented at this Meeting.

On the Tuesday evening Conferees enjoyed a Boat Excursion (with band and dancing) around the port of Rotterdam, during which the Conference Dinner was served, while on the Wednesday evening they were treated to superb solo performances by Profs. Kremer, Wübbenhorst and Gerhard-Multhaupt at a special Chamber Concert Scientists for Scientists held at the TU Muziekcentrum.

The organisation of BDS 2004 was excellent in every way. We thank Prof. Wübbenhorst and his team (PJ Droppert, VR Lupascu, P van Mourik, J van Turnhout and T Verheul-Mentink) for all they did before and during the Meeting to make this such a successful and memorable Meeting in the beautiful old city of Delft.

Further details can be seen at <u>http://www.polymers.tudelft.nl/ids20</u>04/index.html

Prof G Williams, Department of Chemistry, University of Wales Swansea, SWANSEA SA2 8PP, UK g.d.williams@keele.ac.uk

OVERVIEW	
BROADBAND DIELECTRIC AND IMPEDANCE SPECTROSCOPY over 16 decades by Novocontrol Technologies	
10 µHz - 100 µHz - 1 mHz - 10 mHz - 10 Hz - 10 Hz - 10 Hz -	1 kHz - 1 kHz - 10 kHz - 10 kHz - 100 kHz - 100 kHz - 100 MHz - 100 MHz - 1 GHz - 1 GHz - 10
$\begin{array}{c} & - & - & - & - & - & - & - & - & - & $	$10^{3} - 10^{3} - 10^{3} - 10^{3} - 10^{3} - 10^{3} - 10^{3} - 10^{5} - 1$
BDS 10 BDS 20	
BDS 40	
BDS 50	
BDS 8	BDS 70
Factory and Head Office	
Germany Obererbacher Straße 9 D-56414 Hundsangen / GERMANY Phone: ++49 64 35 - 96 23-0 Fax: ++49 64 35 - 96 23-33 Mail: novo@novocontrol.de	United Kingdom Additional Technical and Sales Support for British Customers Headways, Shoulton, Hallow, Worcester WR2 6PX / United Kingdom Phone: ++(0) 870 085 0744 Fax: ++(0) 870 085 0745 Mail: ind@movecentred do
Contact: Mr. den Dulk	Mail. Jed@novocontrol.de Contact: Mr. Jed Marson ++(0) 7974 926 166
Agents:	
USA/Canada NOVOCONTROL America Inc. 611 November Lane / Autumn Woods Willow Springs, North Carolina 27592-7738 / USA Phone: ++(0) 919 639 9323 Toll free: 1-877-639-9323 Fax: ++(0) 919 639 7523 Mail novocontrolusa@earthlink.net Contact: Mr. Joachim Vinson, PhD	Japan Morimura Bros. Inc. 2 nd chemical division Morimura Bldg. 3-1, Toranomon 1-chome Minato-Ku, Tokyo 105 / Japan Phone ++(0) 3-3502-6440 Fax: ++(0) 3-3502-6437 Mail hasegawa@morimura.co.jp
Greece Theodorou Automation SA 113 Geraka str PO Box 67 868 15344 Gerakas / Greece Tel : ++30 1 6047000 Fax : ++30 1 6046230 Mail: test@theodorou.gr Contact: Mr. George Koukas	Contact: Mr. Hasegawa People's Rep. Of China GermanTech Co. Ltd Room 706, No. 7 Building; Hua Qing Jia Yuan Wu Dao Kou, Haidian District Beijing, 100083 / China Mobile ++ 13501128834 Phone ++(10) 82867920/21/22 Fax: ++(10) 82867919 Mail fwang@germantech.com.cn Contact: Mrs. Fang Wang
Benelux countries NOVOCONTROL Benelux B.V. Postbus 231 NL-5500 AE Veldhoven / NETHERLANDS Phone ++(0) 40-2894407 Fax ++(0) 40-2859209	South Korea PST Polymer Science Technologies Rm. 716, Hojung Tower, 528-13 Anyang 6-Dong, Manan-Gu, Anyang-shi, Kyungki-Do, Korea Phone 031-507-8552 Fax: 031-448-6189 Mail sunpoint@hanafos.com Contact: Mr. Young Hong
Taiwan JIEHAN Technology Corporation No. 58, Chung Tai East Road, 404 Taichung / Taiwan Phone ++886-4-2208-2450 Fax: ++886-4-2208-0010 Mail jiehantw@ms76.hinet.net Contact: Mr. Peter Chen	Middle East National Scientific Company Ltd. P.O.Box 437 Riyadh 11411 K.S.A. Phone +966 1 473 6284 Fax +966 1 473 7759 Mail nsc@digi.net.sa Contact: Mr. Osama Ali

Editor Dielectrics Newsletter: Gerhard Schaumburg. Abstracts and papers are always welcome. Please send your script to the editor